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Global guarantees for optimization
min
𝑥∈ℝ𝑑

𝑓 𝑥

When can we have guarantees for global optimality?  

Need structure!

Convexity (implies all 1-critical points are optimal)

Invexity (all 1-critical points are optimal)

Benign landscape (all local minima are optimal)
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Benign landscape
min
𝑥∈ℝ𝑑

𝑓 𝑥

Definition: 𝑓 has a benign landscape if all 2-critical points are optimal:

∇𝑓 𝑥 = 0 and ∇2𝑓 𝑥 ≽ 0  implies 𝑥 is a global min

Goal: Show all 2-critical points 𝑥 are global minima.Benign 
landscape

spurious 
local min

Bad 
landscape
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Stable manifold theorems
+

Łojasiewicz theorem

(strict) 
saddle points 
are unstable!



Some of my previous work …
“Negative curvature obstructs acceleration for g-convex optimization”
 C, Boumal, 2022

“Curvature and complexity: Lower bounds for g-convex optimization”
 C, Boumal, 2023

“Synchronization on circles and spheres with nonlinear interaction”
 C, McRae, Rebjock, Boumal, 2024

“Sensor network localization has benign landscape under relaxation”
 C, McRae, Rebjock, Boumal, to be public very soon

Benign 
Landscape 

Invexity
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The problem: SNL
𝑛 unknown points 𝑧1

∗, 𝑧2
∗, … , 𝑧𝑛

∗  in ℝℓ.
Know a subset of the pairwise distances (measurements)

𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖ for 𝑖𝑗 ∈ 𝐸.
Goal: recover the 𝑛 points (up to translation & rotation)
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Know a subset of the pairwise distances (measurements)

𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖ for 𝑖𝑗 ∈ 𝐸.
Goal: recover the 𝑛 points (up to translation & rotation)
Sensor network localization (SNL) – Torgerson ’58, Shepard ‘62
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Applications

Robotics (sensor network localization), ℓ = dimension = 2,3

Molecular conformation

Data analysis (metric multidimensional scaling)

Graph theory (rigidity)
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The problem: SNL

Need enough distance measurements for well-posedness (global rigidity)
 NP-hard!           (“Euclidean distance geometry and applications” -- Liberti, et al)

Common approach: SDPs
 Polynomial time, under additional assumptions (universal rigidity)

Big drawback: SDP involves (𝑛 + ℓ) × (𝑛 + ℓ) matrices
 quadratic in # of points
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Common approach: solve with SDP (semidefinite program)
 Polynomial time, under additional assumptions (universal rigidity)

Big drawback: SDP involves (𝑛 + ℓ) × (𝑛 + ℓ) matrices
 quadratic in # of points
 

“Theory of semidefinite programming for 
Sensor Network Localization” -- So, Ye ‘06
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Optimization problem

min ෍
𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2 − 𝑑𝑖𝑗

2
2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Variable size = 𝑛ℓ = linear in # of points

But nonconvex!  How bad?

Little is known!  Even simplest possible question was unanswered:
        Open Q: Is landscape benign for complete graph (all distances known)?

Asked by Malone & Trosset 2000, Parhizkar 2013, …

“s-stress”
Kruskal ‘64

31



Optimization problem

min ෍
𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2 − 𝑑𝑖𝑗

2
2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Variable size = 𝑛ℓ = linear in # of points

But nonconvex!  How bad?

Little is known!  Even simplest possible question was unanswered:
        Open Q: Is landscape benign for complete graph (all distances known)?

Asked by Malone & Trosset 2000, Parhizkar 2013, …

“s-stress”
Kruskal ‘64

32



Optimization problem

min ෍
𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2 − 𝑑𝑖𝑗

2
2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Variable size = 𝑛ℓ = linear in # of points

But nonconvex!  How bad?

Little is known!  Even simplest possible question was unanswered:
        Open Q: Is landscape benign for complete graph (all distances known)?

Asked by Malone & Trosset 2000, Parhizkar 2013, …

“s-stress”
Kruskal ‘64

33



Optimization problem

min ෍
𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2 − 𝑑𝑖𝑗

2
2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Variable size = 𝑛ℓ = linear in # of points

But nonconvex!  How bad?

Little is known!  Even simplest possible question was unanswered:
        Open Q: Is landscape benign for complete graph (all distances known)?

Asked by Malone & Trosset 2000, Parhizkar 2013, …

“s-stress”
Kruskal ‘64

34



Optimization problem

min ෍
𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2 − 𝑑𝑖𝑗

2
2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Variable size = 𝑛ℓ = linear in # of points

But nonconvex!  How bad?

Little is known!  Even simplest possible question was unanswered:
        Open Q: Is landscape benign for complete graph (all distances known)?

Asked by Malone & Trosset 2000, Parhizkar 2013, …

“s-stress”
Kruskal ‘64

35



Optimization problem

min ෍
𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2 − 𝑑𝑖𝑗

2
2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Variable size = 𝑛ℓ = linear in # of points

But nonconvex!  How bad?

Little is known!  Even simplest possible question was unanswered:
        Open Q: Is landscape benign for complete graph (all distances known)?

Asked by Malone & Trosset 2000, Parhizkar 2013, …

“s-stress”
Kruskal ‘64

Computationally easy, via 
Eigenvalue decomposition



Synthetic experiment, complete graph
Open Q: Is s-stress landscape always benign for complete graph?

(1) Choose ground truths 𝑧1
∗, 𝑧2

∗, … , 𝑧𝑛
∗  at random (normal iid)

(2) Run gradient descent/trust regions/etc.
(3) Find global min?
(4) Repeat

Always finds global min!

Maybe landscape is always benign?  
 (for all ground truth configurations 𝑧1

∗, 𝑧2
∗, … , 𝑧𝑛

∗ , all 2-critical points of s-
 stress are global minima?)

NO!
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Counterexample
s-stress can have spurious strict local minima!

Ground truth 𝑧1
∗, 𝑧2

∗, …   Spurious configuration 𝑧1, 𝑧2, …

Set of ground truths with spurious local minima has positive measure
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Counterexample
s-stress can have spurious strict local minima!

Ground truth 𝑧1
∗, 𝑧2

∗, …   Spurious configuration 𝑧1, 𝑧2, …

Set of ground truths with spurious local minima has positive measure

Also see:
Song, Goncalves, Jung, 

Lavor, Mucherino, 
Wolkowicz, 2024
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Counterexample
s-stress can have spurious strict local minima!

Ground truth 𝑧1
∗, 𝑧2

∗, …   Spurious configuration 𝑧1, 𝑧2, …

Hmm … what should we do?
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Counterexample
s-stress can have spurious strict local minima!

Ground truth 𝑧1
∗, 𝑧2

∗, …   Spurious configuration 𝑧1, 𝑧2, …

Optimize over points in ℝ𝟑
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Nonconvex relaxation
min ෍

𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2

− 𝑑𝑖𝑗
2

2
,  𝑑𝑖𝑗 =  ‖𝑧𝑖

∗ − 𝑧𝑗
∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Relax to dimension 𝑘 > ℓ

Minimizer of relaxed problem same as original?
Yes if graph is complete (or more generally if it is universally rigid)

Want 𝑘 small; new problem has 𝑘𝑛 variables
If 𝑘 = 𝑛 − 1, landscape is benign (later)
Can we do better?
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• Graph = ER
• Run TR from random initialization
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Connectivity
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If 𝑘 = 𝑛 − 1, landscape is benign (later)
Can we do better?

Experiment:
• 𝑛 = 50, ℓ = dimension = 2
• Ground truth = iid Gaussian points
• Graph = ER
• Run TR from random initialization
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If 𝑘 = 𝑛 − 1, landscape is benign (later)
Can we do better?
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Nonconvex relaxation
min ෍

𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2

− 𝑑𝑖𝑗
2

2
,  𝑑𝑖𝑗 =  ‖𝑧𝑖

∗ − 𝑧𝑗
∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝ𝑘

Relax to dimension 𝑘 > ℓ

Minimizer of relaxed problem same as original?
Yes if graph is complete (or more generally if it is universally rigid)

Want 𝑘 small; new problem has 𝑘𝑛 variables
If 𝑘 = 𝑛 − 1, easy to see landscape is benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024)
Can we do better?
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Results
Theorem [arbitrary GT]: If graph is complete and relax to

𝑘 ≈ ℓ + 𝑛ℓ,
then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are 
isotropic and iid, and relax to

𝑘 ≈ ℓ log 𝑛 ,
then every 2-critical point is the ground truth.

Conjecture [arbitrary GT]: Relaxing to 𝑘 = ℓ + 1 is enough.
Conjecture [isotropic GT]: Relaxing is not necessary.
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Proof sketch: isotropic
Ground truth 𝑧1

∗, 𝑧2
∗, … in dimension ℓ

1-critical configuration in dimension 𝑘 > ℓ

Goal: perturb 1-critical configuration to decrease cost

Step 1: Align coordinate systems.  How?  Randomly!

ℝℓ

ℝ𝑘
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Proof sketch: isotropic
Ground truth 𝑧1

∗, 𝑧2
∗, … in dimension ℓ

1-critical configuration in dimension 𝑘 > ℓ

Goal: perturb 1-critical configuration to decrease cost

Step 1: Align coordinate systems.  How?  Randomly!

ℝ𝑘
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Proof sketch: isotropic
Ground truth 𝑧1

∗, 𝑧2
∗, … in dimension ℓ

1-critical configuration in dimension 𝑘 > ℓ

Goal: perturb 1-critical configuration to decrease cost
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ℝ𝑘
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Proof sketch: isotropic
Goal: perturb 1-critical configuration to decrease cost

Step 1: Align coordinate systems.  How?  Randomly!

Step 2: Move 1-critical configuration “toward” ground truth. 

ℝ𝑘
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Proof sketch: isotropic
Goal: perturb 1-critical configuration to decrease cost

Step 1: Align coordinate systems.  How?  Randomly!

Step 2: Move 1-critical configuration “toward” ground truth. 

On average, this random perturbation will decrease the cost

ℝ𝑘
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Proof sketch: isotropic
Goal: perturb 1-critical configuration to decrease cost

Step 1: Align coordinate systems.  How?  Randomly!

Step 2: Move 1-critical configuration “toward” ground truth. 

On average, this random perturbation will decrease the cost

Mei, Misiakiewicz, Montanari, 
Oliveira ‘17

McRae, Boumal ‘23

McRae, Abdalla, Bandeira, 
Boumal '24ℝ𝑘



Results
Theorem [arbitrary GT]: If graph is complete and relax to

𝑘 ≈ ℓ + 𝑛ℓ,
then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are 
isotropic* and iid, and relax to

𝑘 ≈ ℓ + log 𝑛 ,
then every 2-critical point is the ground truth, w.h.p.

Conjecture [arbitrary GT]: Relaxing to 𝑘 = ℓ + 1 is enough.
Conjecture [isotropic GT]: Relaxing is not necessary.
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Results
Theorem [arbitrary GT]: If graph is complete and relax to

𝑘 ≈ ℓ + 𝑛ℓ,
then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are 
isotropic* and iid, and relax to

𝑘 ≈ ℓ + log 𝑛 ,
then every 2-critical point is the ground truth, w.h.p.

Conjecture [arbitrary GT]: Relaxing to 𝑘 = ℓ + 1 is enough.
Conjecture [isotropic GT]: Relaxing is not necessary.

Alternative perspective:
a

Low-Rank Optimization
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Notation and reformulation

𝑍 =
𝑧1

⊤

⋮
𝑧𝑛

⊤
∈ ℝ𝑛×ℓ, 𝑍∗ =

𝑧1
∗⊤

⋮
𝑧𝑛

∗ ⊤
∈ ℝ𝑛×ℓ

Gram matrices 𝑌 = 𝑍𝑍⊤, 𝑌∗ = 𝑍∗𝑍∗
⊤

MDS map Δ ∶ Sym 𝑛 → Hollow 𝑛
     Gram → EDM (euclidean distance matrix)

Δ 𝑌 𝑖𝑗: = 𝑌𝑖𝑖 + 𝑌𝑗𝑗 − 2𝑌𝑖𝑗 = 𝑧𝑖 − 𝑧𝑗
2
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Notation and reformulation
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2

𝑖𝑗-entry = ⟨𝑧𝑖, 𝑧𝑗⟩ 𝑖𝑗-entry = 𝑧𝑖 − 𝑧𝑗
2
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Notation and reformulation
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Notation and reformulation
min Δ 𝑍𝑍⊤ − 𝑍∗𝑍∗

⊤ 2 over 𝑍 ∈ ℝ𝑛×ℓ

min Δ 𝑌 − 𝑌∗
2 over 𝑌 ≽ 0 with rank 𝑌 ≤ ℓ

min Δ 𝑌 − 𝑌∗
2 over 𝑌 ≽ 0 with rank 𝑌 ≤ 𝑘

If 𝑘 = 𝑛, problem is convex

RIP?  No! Δ∗ ∘ Δ has condition number 𝑛

“s-stress”
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Notation and reformulation
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“s-stress”
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Notation and reformulation
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2 over 𝑌 ≽ 0 with rank 𝑌 ≤ ℓ

min Δ 𝑌 − 𝑌∗
2 over 𝑌 ≽ 0 with rank 𝑌 ≤ 𝑘

• If 𝑘 = 𝑛, problem is convex (1-critical points are global mins)

• Map 𝑍 ⟼ 𝑍𝑍⊤ is 2 ⟹ 1, i.e., 2-critical points map to 1-critical points 
     [Levin , Kileel, Boumal 2022; Ha, Liu, Barber 2018] 

• Conclusion: Landscape benign if 𝑘 = 𝑛

(relax)

“s-stress”
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Notation and reformulation
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“s-stress”
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Restricted Isometry Property?
min Δ 𝑌 − 𝑌∗

2 over 𝑌 ≽ 0 with rank 𝑌 ≤ 𝑘

Restricted Isometry Property (RIP):

𝑌 𝐹
2 ≤ Δ 𝑌 𝐹

2 ≤ 3 𝑌 𝐹
2  for all 𝑌 s. t. rank 𝑌 ≤ 2𝑘.

If RIP, then benign landscape [Bhojanapalli et al., 2016; Ge et al., 2017; Zhang et al., 2019]

Δ is not RIP!   Δ∗ ∘ Δ has RIP-condition-number 𝑛
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Restricted Isometry Property?
min Δ 𝑌 − 𝑌∗

2 over 𝑌 ≽ 0 with rank 𝑌 ≤ 𝑘

Restricted Isometry Property (RIP):

𝑌 𝐹
2 ≤ Δ 𝑌 𝐹

2 ≤ 3 𝑌 𝐹
2  for all 𝑌 s. t. rank 𝑌 ≤ 2𝑘.

If RIP, then benign landscape [Bhojanapalli et al., 2016; Ge et al., 2017; Zhang et al., 2019]

Δ does not satisfy RIP!  Δ has RIP-condition-number 𝑛
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Special properties of SNL map?
min Δ 𝑌 − 𝑌∗

2 over 𝑌 ≽ 0 with rank 𝑌 ≤ 𝑘

Special “perturbation” of the identity

Δ∗ ∘ Δ 𝑌 = 𝑌 + Θ 𝑌
Δ∗ ∘ Δ −1 𝑌 = 𝑌 − Γ 𝑌

New “general” theorem: If Γ is completely positive, contractive, and 
satisfies
• 𝑎⊤Γ 𝑎𝑏⊤ + 𝑏𝑎⊤ 𝑏 ≤ 2𝑎⊤Γ 𝑏𝑏⊤ 𝑎 ∀𝑎, 𝑏 ∈ ℝ𝑛

• 𝑌, Θ 𝑌 ≤ 𝑐 𝑌, Γ 𝑌  ∀𝑌
then landscape is benign when relax to 𝑘 ≈ ℓ + 𝑐ℓ.

“s-stress”
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Special properties of SNL map?
min Δ 𝑌 − 𝑌∗

2 over 𝑌 ≽ 0 with rank 𝑌 ≤ 𝑘

Special “perturbation” of the identity

Δ∗ ∘ Δ 𝑌 = 𝑌 + Ψ 𝑌

Δ∗ ∘ Δ −1 𝑌 = 𝑌 − Γ 𝑌

New “general” theorem: If Γ 𝑌 = σ𝑖=1
𝑁 𝑎𝑖𝑎𝑖

⊤ 𝑎𝑖
⊤𝑌𝑎𝑖  with 𝑎𝑖 ∈ ℝ𝑛,

• is contractive (trace and operator norm),
• and satisfies 𝑌, Ψ 𝑌 ≤ 𝑐 𝑌, Γ 𝑌  ∀𝑌
then landscape is benign when relax to 𝑘 ≈ ℓ + 𝑐ℓ.

“s-stress”

88



Takeaways for SNL
Summary:
• s-stress can have spurious local mins (even for complete graph)
• If relax mildly ( 𝑛 𝑜𝑟 log 𝑛), s-stress landscape becomes benign

Conceptual takeaways:
• Low-dimensional nonconvex relaxations (cheap and often work!)
• Going beyond RIP: structured “perturbations”
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Takeaways for SNL
Summary:
• s-stress can have spurious local mins (even for complete graph)
• If relax mildly ( 𝑛 𝑜𝑟 log 𝑛), s-stress landscape becomes benign

Conceptual takeaways:
• Low-dimensional nonconvex relaxations (cheap and often work!)

• Other applications?

• Randomized directions for proving benign landscapes
• Going beyond RIP: structured “perturbations”
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Taking a step back
• Most landscape results proved on case-by-case basis
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Taking a step back
• Most landscape results proved on case-by-case basis

• Tools for benign landscapes?  When does low-dimensional relaxation help?

• Reparameterization

   Relationship between landscapes of 𝒇 and 𝒇 ∘ 𝝓?

    

min Δ 𝑌 − 𝑌∗
2 over 𝑌 ≽ 0 with rank 𝑌 ≤ ℓ

min Δ 𝑍𝑍⊤ − 𝑍∗𝑍∗
⊤ 2 over 𝑍 ∈ ℝ𝑛×ℓ

min
𝑦

 𝑓 𝑦

min
z

𝑓 𝜙 𝑧
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Tools for landscapes?
• Most landscape results proved on case-by-case basis

• Tools for benign landscapes?  When does low-dimensional relaxation help?

• Reparameterization  min
𝑦

 𝑓 𝑦  min
z

𝑓 𝜙 𝑧

    Relationship between landscapes of 𝒇 and 𝒇 ∘ 𝝓?

• Some problems with enough symmetry are reparameterizations of convex problems!

 Ex: Rayleigh quotient, some low-rank matrix and tensor factorization problems,
                Horn’s problem, Paulsen problem, quantum marginals problem, …

    Kostant and Kirwan convexity theorems (symplectic geometry)
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Tools for landscapes?
• Most landscape results proved on case-by-case basis

• Tools for benign landscapes?  When does low-dimensional relaxation help?

• Reparameterization  min
𝑦

 𝑓 𝑦  min
z

𝑓 𝜙 𝑧

    Relationship between landscapes of 𝒇 and 𝒇 ∘ 𝝓?

• Some problems with enough symmetry are nice reparameterizations of convex problems!

 Ex: Rayleigh quotient, some low-rank matrix and tensor factorization problems,
                Horn’s problem, Paulsen problem, quantum marginals problem, …

    Kostant and Kirwan convexity theorems (tools from symplectic geometry)

    Can we use these tools to understand other optimization problems, e.g., SNL?
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• Morse theory:
    Fact: If 𝑓 is a Morse function defined on a compact manifold, and has no 
    critical points of index 1, then the landscape of 𝑓 is benign!

 Index of point 𝑥 = number of negative eigenvalues of ∇2𝑓 𝑥

Empirically, relaxing 
removes critical 
points of index 1.
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SNL with landmarks

min ෍
𝑖

𝑧 − 𝑧𝑖
2 − 𝑑𝑖

2 2 ,  𝑑𝑖 =  ‖𝑧∗ − 𝑧𝑖
∗‖

  over 𝑧 ∈ ℝℓ

Solved via local algorithms.  Guarantees?

Nonconvex!  How bad?

Possible variations: Noisy measurements, landmarks, …

Our focus: (nearly) complete graphs, no noise
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SNL with landmarks

min ෍
𝑖

𝑧 − 𝑧𝑖
2 − 𝑑𝑖

2 2 ,  𝑑𝑖 =  ‖𝑧∗ − 𝑧𝑖
∗‖

  over 𝑧 ∈ ℝℓ

Landscape is not benign in general.

Proposition: If relax to 𝑘 = ℓ + 1, the landscape is benign.
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Hubs
Theorem [isotropic GT]: If graph is nearly complete, ground truth points are 
isotropic and iid, and relax to

𝑘 ≈ ℓ log 𝑛 ,
then every 2-critical point is the ground truth.

The hub of a graph is the set of vertices which are connected to all other 
vertices.

𝐻 = size of hub

Theorem [isotropic GT]: If ground truth points are isotropic and iid, and relax 
to

𝑘 ≈ poly 𝑛 − 𝐻 ℓ log 𝑛 ,
then every 2-critical point is the ground truth.
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Counterexamples
Minima number of points to have spurious local minima?

𝑛 = ℓ + 2 (for ℓ ≥ 5)
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